Mapping health needs

Data from GBD 2010 study


In [30]:
library(data.table)

In [76]:
GBD <- read.table("../Data/DALY_YLL_deaths_per_region_and_27_and_excluded_diseases_2005.txt")
GBD <- data.table(GBD)
names(GBD)


  1. 'metr'
  2. 'Region'
  3. 'Disease'
  4. 'burden'
  5. 'cats27'

In [77]:
#Total burden per region (with excluded categories)
dg <- GBD[,list(lapply(.SD,sum),
                lapply(.SD[Disease!="Injuries",],sum),
                lapply(.SD[cats27==TRUE,],sum)),.SDcols=c("burden"),by=c("metr","Region")]

In [78]:
#Part of injuries among total burden per region per metric
dg$Prop_inj <- 100 - 100*as.numeric(dg$V2)/as.numeric(dg$V1)

In [79]:
#Part of excluded diseases among total burden of diseases, per region per metric
dg$Prop_excl_dis <- 100 - 100*as.numeric(dg$V3)/as.numeric(dg$V2)

In [80]:
dg[,c(1,2,6,7)]


metrRegionProp_injProp_excl_dis
1daly Central Europe, Eastern Europe, and Central Asia14.1390406120141 0.374399537566802
2daly High-income 9.95374248395683 0.874546593018735
3daly Latin America and Caribbean14.1176535353185 1.07857397578715
4daly North Africa and Middle East10.6130446519093 1.30766119323818
5daly South Asia 11.22882299166971.41029163665819
6daly Southeast Asia, East Asia and Oceania12.1743208640528 0.877672086963031
7daly Sub-Saharian Africa6.77986985119354 1.54287339643092
8death Central Europe, Eastern Europe, and Central Asia9.74096749853662 0.1420245253546
9death High-income 6.45421392631165 0.993291331280986
10death Latin America and Caribbean13.1785927286985 1.04315602180657
11death North Africa and Middle East9.63586256427789 1.32503150911653
12death South Asia 11.444711205292 1.26301539706411
13death Southeast Asia, East Asia and Oceania9.80633464149911 0.613785215382705
14death Sub-Saharian Africa7.47074031266474 1.42484248873917
15yld Central Europe, Eastern Europe, and Central Asia7.11547433245897 0.616884249970013
16yld High-income 7.0708849504915 0.402194812080424
17yld Latin America and Caribbean3.73141412680833 0.826968094599863
18yld North Africa and Middle East6.18063172528117 0.964996019518679
19yld South Asia 5.151607387919781.41224665210612
20yld Southeast Asia, East Asia and Oceania6.22216438537055 0.770991084028012
21yld Sub-Saharian Africa3.09407142182695 1.44476407491931
22yll Central Europe, Eastern Europe, and Central Asia17.0762222147661 0.260814567550838
23yll High-income 12.52973701495711.32296061728127
24yll Latin America and Caribbean20.5024751607031 1.26587724614045
25yll North Africa and Middle East13.3777555825167 1.53915644631607
26yll South Asia 13.22946185617291.40958828891362
27yll Southeast Asia, East Asia and Oceania15.3583586953629 0.940901410564933
28yll Sub-Saharian Africa7.43176268238633 1.56103893792361

In [81]:
#Worldwide:
dg <- GBD[,list(lapply(.SD,sum),
                lapply(.SD[Disease!="Injuries",],sum),
                lapply(.SD[cats27==TRUE,],sum)),.SDcols=c("burden"),by=c("metr")]

In [82]:
#Part of injuries among total burden per metric
dg$Prop_inj <- 100 - 100*as.numeric(dg$V2)/as.numeric(dg$V1)
#Part of excluded diseases among total burden of diseases per metric
dg$Prop_excl_dis <- 100 - 100*as.numeric(dg$V3)/as.numeric(dg$V2)

In [83]:
dg[,c(1,5,6)]


metrProp_injProp_excl_dis
1daly 10.57307794482061.18506603297897
2death 9.40952379404409 0.967403128886815
3yld 5.60138476935332 0.955603452962151
4yll 12.56234779941551.2841882674719

We create a dataframe after exclusion of disease and adding All diseases and All regions


In [84]:
GBD <- GBD[GBD$cats27==TRUE,]

In [85]:
alldis <- GBD[,lapply(.SD,sum),.SDcols="burden",by=c("metr","Region")]
alldis$Disease <- "all"
alldis <- alldis[,c(1,2,4,3)]
allreg <- GBD[,lapply(.SD,sum),.SDcols="burden",by=c("metr","Disease")]
allreg$Region <- "All"
allreg <- allreg[,c(1,4,2,3)]

In [86]:
GBD <- GBD[,c(1:4)]

In [87]:
GBD <- rbindlist(list(GBD,alldis,allreg))

In [89]:
write.table(GBD,"../Data/DALY_YLL_deaths_per_region_and_27_diseases_2005.txt")

In [ ]: