In [30]:
    
library(data.table)
    
In [76]:
    
GBD <- read.table("../Data/DALY_YLL_deaths_per_region_and_27_and_excluded_diseases_2005.txt")
GBD <- data.table(GBD)
names(GBD)
    
    
In [77]:
    
#Total burden per region (with excluded categories)
dg <- GBD[,list(lapply(.SD,sum),
                lapply(.SD[Disease!="Injuries",],sum),
                lapply(.SD[cats27==TRUE,],sum)),.SDcols=c("burden"),by=c("metr","Region")]
    
In [78]:
    
#Part of injuries among total burden per region per metric
dg$Prop_inj <- 100 - 100*as.numeric(dg$V2)/as.numeric(dg$V1)
    
In [79]:
    
#Part of excluded diseases among total burden of diseases, per region per metric
dg$Prop_excl_dis <- 100 - 100*as.numeric(dg$V3)/as.numeric(dg$V2)
    
In [80]:
    
dg[,c(1,2,6,7)]
    
    
In [81]:
    
#Worldwide:
dg <- GBD[,list(lapply(.SD,sum),
                lapply(.SD[Disease!="Injuries",],sum),
                lapply(.SD[cats27==TRUE,],sum)),.SDcols=c("burden"),by=c("metr")]
    
In [82]:
    
#Part of injuries among total burden per metric
dg$Prop_inj <- 100 - 100*as.numeric(dg$V2)/as.numeric(dg$V1)
#Part of excluded diseases among total burden of diseases per metric
dg$Prop_excl_dis <- 100 - 100*as.numeric(dg$V3)/as.numeric(dg$V2)
    
In [83]:
    
dg[,c(1,5,6)]
    
    
We create a dataframe after exclusion of disease and adding All diseases and All regions
In [84]:
    
GBD <- GBD[GBD$cats27==TRUE,]
    
In [85]:
    
alldis <- GBD[,lapply(.SD,sum),.SDcols="burden",by=c("metr","Region")]
alldis$Disease <- "all"
alldis <- alldis[,c(1,2,4,3)]
allreg <- GBD[,lapply(.SD,sum),.SDcols="burden",by=c("metr","Disease")]
allreg$Region <- "All"
allreg <- allreg[,c(1,4,2,3)]
    
In [86]:
    
GBD <- GBD[,c(1:4)]
    
In [87]:
    
GBD <- rbindlist(list(GBD,alldis,allreg))
    
In [89]:
    
write.table(GBD,"../Data/DALY_YLL_deaths_per_region_and_27_diseases_2005.txt")
    
In [ ]: